4.4 Article

Lanthanide-loaded liposomes for multimodality imaging and therapy

Journal

CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS
Volume 21, Issue 5, Pages 520-527

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/cbr.2006.21.520

Keywords

liposomes; molecular imaging; MRI; gadolinium; holmium; SPECT; technetium

Ask authors/readers for more resources

Many advanced molecular imaging agents are currently being investigated preclinically. Especially, liposomes, have proven to be very promising carrier systems for diagnostic agents for use in single-photon emission computed tomography (SPECT) or magnetic resonance imaging (MRI), as well as for therapeutic agents to treat diseases such as cancer. In this study, nanosized liposomes were designed and labeled with the radionuclides, holmium-166 (both a beta- ad gamma-emitter and also highly paramagnetic) or technetium-99m, and coloaded with paramagnetic gadolinium allowing multimodality SPECT and MR imaging and radionuclide therapy with one single agent. Methods: Diethylenetriaminepentaacetic acid bisoctadecylamide (an amphiphilic molecule with a chelating group suitable for labeling with radionuclides) and gadoliniumacetylacetonate (GdAcAc) (a small lipophilic paramagnetic molecule) were incorporated in liposomes. The liposomes were characterized by measuring their mean size and size distribution, gadolinium content, and radiochemical stability after incubation in human serum at 37 degrees C. The MRI properties (in vitro) were determined by use of relaxivity measurements at 1.5 and 3.0 Tesla in order to evaluate their potency as imaging agents. Results: The liposomes were successfully labeled with holmium-166, resulting in a high labeling efficiency (95% +/- 1%) and radiochemical stability (> 98% after 48 hours of incubation), and coloaded with GdAcAc. Labeling of liposomes with technetium-99m was somewhat less efficient (85% +/- 2%), although their radiochemical stability was sufficient (95% +/- 1% after 6 hours of incubation). MRI measurements showed that the incorporation of GdAcAc had a strong effect on the MRI relaxivity. Conclusions: The synthesized liposomes allow for multimodality imaging and therapy, which makes these new agents highly attractive for future applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available