4.6 Article

Simple and controlled single electron transistor based on doping modulation in silicon nanowires

Journal

APPLIED PHYSICS LETTERS
Volume 89, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2358812

Keywords

-

Ask authors/readers for more resources

A simple and highly reproducible single electron transistor (SET) has been fabricated using gated silicon nanowires. The structure is a metal-oxide-semiconductor field-effect transistor made on silicon-on-insulator thin films. The channel of the transistor is the Coulomb island at low temperature. Two silicon nitride spacers deposited on each side of the gate create a modulation of doping along the nanowire that creates tunnel barriers. Such barriers are fixed and controlled, like in metallic SETs. The period of the Coulomb oscillations is set by the gate capacitance of the transistor and therefore controlled by lithography. The source and drain capacitances have also been characterized. This design could be used to build more complex SET devices. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available