4.7 Article

NMDA-dependent, but not group I metabotropic glutamate receptor-dependent, long-term depression at schaffer collateral-CA1 synapses is associated with long-term reduction of release from the rapidly recycling presynaptic vesicle pool

Journal

JOURNAL OF NEUROSCIENCE
Volume 26, Issue 40, Pages 10270-10280

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3091-06.2006

Keywords

CA1; hippocampus; long-term depression; metabotropic glutamate receptors; NMDA; presynaptic; rapidly recycling vesicle pool; Schaffer collateral; transmitter release

Categories

Funding

  1. NINDS NIH HHS [R56 NS044421, R01 NS044421, NS44421] Funding Source: Medline

Ask authors/readers for more resources

Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is substantial evidence supporting changes in presynaptic release. Direct chemical activation of either NMDA or group I metabotropic glutamate receptor (mGluR1) elicits LTD of similar magnitudes, but it is unknown whether they share common expression mechanisms. Using dual-photon laser-scanning microscopy of FM1-43 [N-(3-triethylammoniumpropyl)- 4-(4-(dibutylamino)styryl) pyridinium dibromide] to directly visualize presynaptic vesicular release from the rapidly recycling vesicle pool (RRP) at Schaffer collateral terminals in field CA1 of rat hippocampal slices, we found that a persistent reduction in vesicular release from the RRP is induced by NMDA-LTD but not by mGluR1-LTD. Variance-mean analyses of Schaffer collateral release probability (P-r) at varying extracellular calcium concentrations confirmed that NMDA-LTD was associated with reduced P-r, whereas mGluR1-LTD was not. Pharmacological isolation of NMDAR-dependent and mGluR-dependent forms of stimulus-evoked LTD revealed that both are composed of a combination of presynaptic and postsynaptic alterations. However, when group I mGluR-dependent LTD was isolated by combining an NMDAR blocker with a group II mGluR antagonist, this form of LTD was purely postsynaptic. The nitric oxide synthase inhibitor N omega-nitro-L-arginine blocked the induction of NMDA-LTD but did not alter mGluR-LTD, consistent with a selective role for nitric oxide as a retrograde messenger mediating NMDA-LTD. These data demonstrate that single synapses can express multiple forms of LTD with different sites of expression, that NMDA-LTD is a combination of presynaptic and postsynaptic alterations, but that group I mGluR-LTD appears to be expressed entirely postsynaptically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available