4.5 Article

Toward efficient photomodulation of conjugated polymer emission: Optimizing differential energy transfer in azobenzene-substituted PPV derivatives

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 39, Pages 19183-19190

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0613236

Keywords

-

Ask authors/readers for more resources

We present fluorescence studies of quenching behavior in photoaddressable azobenzene-substituted derivatives of the fluorescent conjugated polymer poly(p-phenylenevinylene) (PPV). The azobenzene side chains partially quench the PPV fluorescence, and we have shown previously that the quenching efficiency is greater when the azobenzene side chains are cis than when they are trans. This effect provides a photoaddressable means of modulating the fluorescence intensity of PPV derivatives. To optimize the efficiency of photoinduced intensity modulation, it is important to understand the molecular nature of quenching by both trans- and cis-azobenzene side chains. Here we investigate the photophysical origins of quenching by the two isomers using steady-state and time-resolved fluorescence spectroscopy. We present results from the azobenzene-modified PPV derivative poly(2-methoxy-5-((10-(4-(phenylazo)phenoxy)decyl)oxy)-1,4-phenylenevinylene) (MPA-10-PPV) and two new related polymers, a copolymer lacking half of the azobenzene side chains and an analogue of MPA-10-PPV with a tert-butyl-substituted azobenzene. These studies reveal that steric interactions influence the extent of PPV emission quenching by trans- azobenzene but do not affect the efficient quenching by cis-azobenzene. The difference in dynamic quenching efficiencies between trans- and cis-azobenzene isomers is consistent with fluorescence resonance energy transfer. These results show that it is possible to control the efficiency of photoswitchable fluorescence modulation through specific structural variations designed to encourage or block quenching by trans- azobenzene. This is a promising approach to providing useful general guidelines for designing photomodulated PPV derivatives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available