4.7 Article

Impact of microbial growth on water flow and solute transport in unsaturated porous media

Journal

WATER RESOURCES RESEARCH
Volume 42, Issue 10, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2005WR004550

Keywords

-

Ask authors/readers for more resources

[ 1] A novel analytical method was developed that permitted real-time, noninvasive measurements of microbial growth and associated changes in hydrodynamic properties in porous media under unsaturated flowing conditions. Salicylate-induced, lux gene-based bioluminescence was used to quantify the temporal and spatial development of colonization over a 7-day time course. Water contents were determined daily by measuring light transmission through the system. Hydraulic flow paths were determined daily by pulsing a bromophenol blue dye solution through the colonized region of the sand. Bacterial growth and accumulation had a significant impact on the hydraulic properties of the porous media. Microbial colonization caused localized drying within the colonized zone, with decreases in saturation approaching 50% of antecedent values, and a 25% lowering of the capillary fringe height. Flow was retarded within the colonized zone and diverted around it concurrent with the expansion of the colonized zone between days 3 and 6. The location of horizontal dispersion corresponded with the cell densities of 1 - 3 x 10(9) cells g(-1) dry sand. The apparent solute velocity through the colonized region was reduced from 0.41 cm min(-1) (R-2 = 0.99) to 0.25 cm min(-1) (R-2 = 0.99) by the sixth day of the experiment, associated with population densities that would occupy approximately 7% of the available pore space within the colonized region. Changes in the extent of colonization occurred over the course of the experiment, including upward migration against flow. The distribution of cells was not determined by water flow alone, but rather by a dynamic interaction between water flow and microbial growth. This experimental system provides rich data sets for the testing of conceptualizations expressed through numerical modeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available