4.8 Article

Spatiotemporal regulation of c-Fos by ERK5 and the E3 ubiquitin ligase UBR1, and its biological role

Journal

MOLECULAR CELL
Volume 24, Issue 1, Pages 63-75

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2006.08.005

Keywords

-

Ask authors/readers for more resources

c-Fos is regulated by phosphorylation and multiple turnover mechanisms. We found that c-Fos was ubiquitylated in the cytoplasm during IL-6/gp130 stimulation under MEK inhibition and sought the mechanisms involved in the regulation. We show that sustained ERK5 activity and the E3 ligase UBR1 regulate the stability and subcellular localization of c-Fos. UBR1, rapidly induced by STAT3, interacts with and ubiquitylates c-Fos in the cytoplasm for its accelerated degradation. ERK5 inhibits the nuclear export of c-Fos by phosphorylating Thr232 in the c-Fos NES221-233 and disrupts the interaction of c-Fos with UBR1 by phosphorylating Ser32. Moreover, UBR1 depletion in HeLa cells, which constitutively express UBR1 at a high level, enhances both c-Fos expression and cell growth, whereas ERK5 depletion reduces both of them. Interestingly, an NES mutant of c-Fos, but not wild-type, substitutes ERK5 activity for HeLa cell proliferation. Thus, this spatiotemporal regulation of c-Fos by ERK5 and UBR1 is critical for the regulation of c-Fos/AP-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available