4.6 Article

Odorant binding and conformational dynamics in the odorant-binding protein

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 40, Pages 29929-29937

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M604869200

Keywords

-

Ask authors/readers for more resources

In mammals, the olfactory epithelium secretes odorantbinding proteins ( OBPs), which are lipocalins found freely dissolved in the mucus layer protecting the olfactory neurons. OBPs may act as passive transporters of predominantly hydrophobic odorant molecules across the aqueous mucus layer, or they may play a more active role in which the olfactory neuronal receptor recognizes the OBP- ligand complex. To better understand the molecular events accompanying the initial steps in the olfaction process, we have performed molecular dynamics studies of rat and pig OBPs with the odorant molecule thymol. These calculations provide an atomic level description of conformational changes and pathway intermediates that remain difficult to study directly. A series of eight independent molecular dynamics trajectories of rat OBP permitted the observation of a consensus pathway for ligand unbinding and the calculation of the potential of mean force ( PMF) along this path. Titration microcalorimetry confirmed the specific binding of thymol to this protein with a strong hydrophobic component. In both rat and pig OBPs we observed lipocalin strand pair opening in the presence of ligand, consistent with potential roles of these proteins in olfactive receptor recognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available