4.8 Article

Molecular dynamics simulation of ratchet motion in an asymmetric nanochannel

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 14, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.144509

Keywords

-

Ask authors/readers for more resources

The persistence of ratchet effects, i.e., nonzero mass flux under a zero-mean time-dependent drive, when many-body interactions are present, is studied via molecular dynamics (MD) simulations of a simple liquid flowing in an asymmetric nanopore. The results show that (i) ratchet effects persist under many-body density correlations induced by the forcing; (ii) two distinct linear responses (flux proportional to the drive amplitude) appear under strong loads. One regime has the same conductivity of linear response theory up to a forcing of about 10 kT, while the second displays a smaller conductivity, the difference in responses is due to geometric effects alone. (iii) Langevin simulations based on a naive mapping of the many-body equilibrium bulk diffusivity, D, onto the damping rate, gamma are also found to yield two distinct linear responses. However, in both regimes, the flux is significantly smaller than the one of MD simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available