4.8 Article

Generation of specific Ca2+ signals from Ca2+ stores and endocytosis by differential coupling to messengers

Journal

CURRENT BIOLOGY
Volume 16, Issue 19, Pages 1931-1937

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2006.07.070

Keywords

-

Funding

  1. MRC [G8801575] Funding Source: UKRI
  2. Medical Research Council [G8801575] Funding Source: researchfish
  3. Medical Research Council [G8801575] Funding Source: Medline

Ask authors/readers for more resources

It remains unclear how different intracellular stores could interact and be recruited by Ca2+-releasing messengers to generate agonist-specific Ca2+ signatures. In addition, refilling of acidic stores such as lysosomes and secretory granules occurs through endocytosis, but this has never been investigated with regard to specific Ca2+ signatures. In pancreatic acinar cells, acetylcholine (ACh), cholecystokinin (CCK), and the messengers cyclic ADP-ribose (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), and inositol 1, 4,5-trisphosphate (IP3) evoke repetitive local Ca2+ spikes in the apical pole. Our work reveals that local Ca2+ spikes evoked by different agonists all require interaction of acid Ca2+ stores and the endoplasmic reticulum (ER), but in different proportions. CCK and ACh recruit Ca2+ from lysosomes and from zymogen granules through different mechanisms; CCK uses NAADP and cADPR, respectively, and ACh uses Ca2+ and IP3, respectively. Here, we provide pharmacological evidence demonstrating that endocytosis is crucial for the generation of repetitive local Ca2+ spikes evoked by the agonists and by NAADP and IP3. We find that cADPR-evoked repetitive local Ca2+ spikes are particularly dependent on the ER. We propose that multiple Ca2+-releasing messengers determine specific agonist-elicited Ca2+ signatures by controlling the balance among different acidic Ca2+ stores, endocytosis, and the ER.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available