4.5 Article

Frictional dilatancy

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 7, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006GC001374

Keywords

tribology; asperity; exponential creep; fault gouge; physical properties of rocks : fracture and flow; physical properties of rocks : plasticity, diffusion, and creep; seismology : earthquake dynamics

Ask authors/readers for more resources

[1] Frictional sliding dilates gouge or increases the separation of sliding surfaces. A common hypothesis is that the rate of dilatational strain scales linearly with the rate of shear strain. The proportionality constant is called the dilatancy coefficient. Real contact theory of friction may explain this feature. Moving contact asperities produce damaged regions with elastic strains scaling to the ratio of the real strength of asperities to the elastic modulus. Balance between this local strain-energy production rate and macroscopic work against normal traction indicates that the dilatancy coefficient scales with this ratio. So do the average slopes on a mature rough sliding surface if opening-mode cracks are unimportant. The result is compatible with the observed dilatancy coefficient of quartz gouge, similar to 4%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available