4.1 Article

Quantifying fluid mixing with the Shannon entropy

Journal

MACROMOLECULAR THEORY AND SIMULATIONS
Volume 15, Issue 8, Pages 595-607

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mats.200600037

Keywords

entropy; mixing; numerical simulations; polymer processing

Ask authors/readers for more resources

We introduce a methodology to quantify the quality of mixing in various systems, including polymeric ones, by adapting the Shannon information entropy. For illustrative purposes we use particle advection of two species in a two-dimensional cavity flow. We compute the entropy by using the probability of finding a suitable chosen group/complex of particles of a given species, at a given location. By choosing the size of the group to be in direct proportion to the overall concentration of the components in the mixture we ensure that the entropic measure is maximized for the case of perfect mixing, that is, when at each location the component concentration is equal to the corresponding overall component concentrations. The scale of observation role in evaluating mixing is analyzed using the entropic methodology. We also illustrate the effect of initial conditions on mixing in a laminar system, typical in operations involving polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available