4.5 Article

Differential gene expression in the rat cochlea after exposure to impulse noise

Journal

NEUROSCIENCE
Volume 142, Issue 2, Pages 425-435

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2006.06.037

Keywords

gene expression analysis; noise-induced hearing loss; oxidative stress; robust multi-array average; transcription factors

Categories

Ask authors/readers for more resources

Understanding the molecular biology of noise trauma is vital to developing effective and timely interventions. In a model of explosion-mediated impulse noise injury, differential gene expression was studied in whole rat cochlea preparations at 3 and 24 h following the exposure. We developed a technique using mRNA from a single cochlea on each oligonucleotide microarray to avoid pooling of mRNA samples. Application of a conservative statistical analysis approach resulted in the identification of 61 differentially expressed genes. Within 3 h after the exposure, there was an up-regulation of immediate early genes, mainly transcription factors and genes involved in the tissue's response to oxidative stress. No genes were found to be significantly down-regulated. At 24 h following the exposure, up-regulated genes included members of inflammatory and antioxidant pathways and one gene involved in glutathione metabolism was down-regulated. A subset of genes was confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The present study demonstrates the power of the microarray technique in providing a global view of the gene regulation following noise exposure, and in identifying genes that may be mechanistically important in hearing loss, and thereby serve as a basis for the development of therapeutic interventions. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available