4.6 Article

The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 454, Issue 2, Pages 123-136

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2006.08.006

Keywords

patchouli; patchoulol; terpenes; sesquiterpenes; terpene synthases; heterologous expression; functional characterization

Ask authors/readers for more resources

Pogostemon cablin (patchouli), like many plants within the Lamiaceae, accumulates large amounts of essential oil. Patchouli oil is unique because it consists of over 24 different sesquiterpenes, rather than a blend of different mono-, sesqui- and di-terpene compounds. To determine if this complex mixture of sesquiterpenes arises from an equal number of unique sesquiterpene synthases, we developed a RT-PCR strategy to isolate and functionally characterize the respective patchouli oil synthase genes. Unexpectedly, only five terpene synthase cDNA genes were isolated. Four of the cDNAs encode for synthases catalyzing the biosynthesis of one major sesquiterpene, including a gamma-curcumene synthase, two germacrene D synthases, and a germacrene A synthase. The fifth cDNA encodes for a patchoulot synthase, which catalyzes the conversion of FPP to patchoulol plus at least 13 additional sesquiterpene products. Equally intriguing, the yield of the different in vitro reaction products resembles quantitatively and qualitatively the profile of sesquiterpenes found in patchouli oil extracted from plants, suggesting that a single terpene synthase is responsible for the bulk and diversity of terpene products produced in planta. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available