4.6 Article

Involvement of the IκB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation

Journal

JOURNAL OF IMMUNOLOGY
Volume 177, Issue 8, Pages 5059-5067

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.177.8.5059

Keywords

-

Categories

Ask authors/readers for more resources

Activation of the innate arm of the immune system following pathogen infection relies on the recruitment of latent transcription factors involved in the induction of a subset of genes responsible for viral clearance. One of these transcription factors, IFN regulatory factor 3 (IRF-3), is targeted for proteosomal degradation following virus infection. However, the molecular mechanisms involved in this process are still unknown. In this study, we show that polyubiquitination of IRF-3 increases in response to Sendai virus infection. Using an El temperature-sensitive cell line, we demonstrate that polyubiquitination is required for the observed degradation of IRF-3. Inactivation of NEDD8-activating El enzyme also results in stabilization of IRF-3 suggesting the NEDDylation also plays a role in IRF-3 degradation following Sendai virus infection. In agreement with this observation, IRF-3 is recruited to Cullin1 following virus infection and overexpression of a dominant-negative mutant of Cullin1 significantly inhibits the degradation of IRF-3 observed in infected cells. We also asked whether the C-terminal cluster of phosphoacceptor sites of IRF-3 could serve as a destabilization signal and we therefore measured the half-life of C-terminal phosphomimetic IRF-3 mutants. Interestingly, we found them to be short-lived in contrast to wild-type IRF-3. In addition, no degradation of IRF-3 was observed in TBK1(-/-) mouse embryonic fibroblasts. All together, these data demonstrate that virus infection stimulates a host cell signaling pathway that modulates the expression level of IRF-3 through its C-terminal phosphorylation by the I kappa B kinase-related kinases followed by its polyubiquitination, which is mediated in part by a Cullin-based ubiquitin ligase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available