4.7 Article

Human cerebral cortex: A system for the integration of volume- and surface-based representations

Journal

NEUROIMAGE
Volume 33, Issue 1, Pages 139-153

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2006.04.220

Keywords

human cerebral cortex; cortical thickness; cortical surface area; MRI; morphometry

Funding

  1. NCRR NIH HHS [P41RR14075] Funding Source: Medline
  2. NICHD NIH HHS [HD 62152] Funding Source: Medline
  3. NIMH NIH HHS [MH-16259, MH 57934, F32 MH065040-01A1] Funding Source: Medline

Ask authors/readers for more resources

We describe an MRI-based system for topological analysis followed by measurements of topographic features for the human cerebral cortex that takes as its starting point volumetric segmentation data. This permits interoperation between volume-based and surface-based topographic analysis and extends the functionality of many existing segmentation schemes. We demonstrate the utility of these operations in individual as well as to group analysis. The methodology integrates analyses of cortical segmentation data generated by manual and semi-automated volumetric morphometry routines (such as the program cardviews) with the procedures of the FreeSurfer program to generate a cortical ribbon of the cerebrum and perform cortical topographic measurements (including thickness, surface area and curvature) in individual subjects as well as in subject populations. This system allows the computation of topographical cortical measurements for segmentation data generated from manual and semi-automated volumetric sources other than FreeSurfer. These measurements can be regionally specific and integrated with systems of cortical parcellation that subdivides the neocortex into gyral-based parcellation units (PUs). This system of topographical analysis of the cerebral cortex is consistent with current views of cortical development and neural systems organization of the human and non-human primate brain. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available