4.5 Article

Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 209, Issue 20, Pages 4040-4050

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.02462

Keywords

Fundulus heteroclitus; intestine; water absorption; ion flux; drinking rate; cortisol; Na/K-ATPase; NKCC; CFTR; carbonic anhydrase; fish

Categories

Ask authors/readers for more resources

We have explored intestinal function in the euryhaline killifish Fundulus heteroclitus after transfer from brackish water (10% seawater) to fresh water. Plasma Na+ and Cl- concentrations fell at 12 h post-transfer, but recovered by 7 days. Drinking rate decreased substantially at 12 h (32% of control value) and remained suppressed after 3 and 7 days in fresh water (34 and 43%). By contrast, there was a transient increase in the capacity for water absorption measured across isolated intestines in vitro (3.3- and 2.6-fold at 12 h and 3 days), which returned to baseline after 7 days. These changes in water absorption could be entirely accounted for by changes in net ion flux: there was an extremely strong correlation (R-2=0.960) between water absorption and the sum of net Na+ and net Cl- fluxes (3.42 +/- 0.10 mu l water mu mol(-1) ion). However, enhanced ion transport across the intestine in fresh water would probably not increase water uptake in vivo, because the drinking rate was far less than the capacity for water absorption across the intestine. The increased intestinal ion absorption after freshwater transfer may instead serve to facilitate ion absorption from food when it is present in the gut. Modulation of net ion flux occurred without changes in mRNA levels of many ion transporters (Na+/K+-ATPase alpha(1a), carbonic anhydrase 2, CFTR Cl- channel, Na+/K+/2Cl(-) cotransporter 2, and the signalling protein 14-3-3a), and before a measured increase in Na+/K+-ATPase activity at 3 days, suggesting that there is some other mechanism responsible for increasing ion transport. Interestingly, net Cl- flux always exceeded net Na+ flux, possibly to help maintain Cl- balance and/or facilitate bicarbonate excretion. Our results suggest that intestinal NaCl absorption from food is important during the period of greatest ionic disturbance after transfer to fresh water, and provide further insight into the mechanisms of euryhalinity in killifish.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available