4.4 Article

Photocatalytic electron-transfer oxidation of triphenylphosphine and benzylamine with molecular oxygen via formation of radical cations and superoxide ion

Journal

BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN
Volume 79, Issue 10, Pages 1489-1500

Publisher

CHEMICAL SOC JAPAN
DOI: 10.1246/bcsj.79.1489

Keywords

-

Ask authors/readers for more resources

Photooxygenation of triphenylphosphine (Ph3P) to triphenylphosphine oxide (Ph3P=O) with molecular oxygen (O-2) occurs under photoirradiation of 9-mesityl-10-methylacridinium perchlorate ([Acr(+)-Mes]ClO4-) which acts as an efficient electron-transfer photocatalyst. Photooxidation of benzylamine (PhCH2NH2) with O-2 also occurs efficiently under photoirradiation of Acr(+)-Mes to yield PhCH2N=CHPh and hydrogen peroxide (H2O2). Each photocatalytic reaction is initiated by intramolecular photoinduced electron transfer from the Mes moiety to the singlet excited state of the Acr(+) moiety to produce the electron-transfer state (Acr(center dot)-Mes(center dot+)). The Mes(center dot+) moiety oxidizes Ph3P and PhCH2NH2 to produce the radical cations (Ph3P center dot+ and PhCH2NH2 center dot+, respectively), whereas the Acr(center dot) moiety reduces O-2 to L-2(center dot-). The produced Ph3P center dot+ binds with O-2(center dot-) as well as O-2, leading to the oxygenated product (Ph3P=O). On the other hand, proton transfer from PhCH3NH2 center dot+ to O-2(center dot-) occurs, followed by hydrogen transfer, leading to the dehydrogenated dimer product. PhCH2N=CHPh. In each case, the radical intermediates were detected by laser flash photolysis and ESR measurements to clarify the photocatalytic mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available