4.7 Article

At the next stop sign turn right:: the metalloprotease Tolloid-related 1 controls defasciculation of motor axons in Drosophila

Journal

DEVELOPMENT
Volume 133, Issue 20, Pages 4035-4044

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.02580

Keywords

Drosophila; neuromuscular junction; motor axon guidance; motoneuron; metalloprotease; tolloid; tolkin; tolloid-related 1; sidestep; kuzbanian

Ask authors/readers for more resources

Navigation of motoneuronal growth cones toward the somatic musculature in Drosophila serves as a model system to unravel the molecular mechanisms of axon guidance and target selection. In a large-scale mutagenesis screen, we identified piranha, a motor axon guidance mutant that shows strong defects in the neuromuscular connectivity pattern. In piranha mutant embryos, permanent defasciculation errors occur at specific choice points in all motor pathways. Positional cloning of piranha revealed point mutations in tolloid-related 1 (tlr1), an evolutionarily conserved gene encoding a secreted metalloprotease. Ectopic expression of Tlr1 in several tissues of piranha mutants, including hemocytes, completely restores the wild-type innervation pattern, indicating that Tlr1 functions cell non-autonomously. We further show that loss-of-function mutants of related metalloproteases do not have motor axon guidance defects and that the respective proteins cannot functionally replace Tlr1. tlr1, however, interacts with sidestep, a muscle-derived attractant. Double mutant larvae of tlr1 and sidestep show an additive phenotype and lack almost all neuromuscular junctions on ventral muscles, suggesting that Tlr1 functions together with Sidestep in the defasciculation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available