4.8 Article Proceedings Paper

AC electro-osmotic mixing induced by non-contact external electrodes

Journal

BIOSENSORS & BIOELECTRONICS
Volume 22, Issue 4, Pages 563-567

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2006.05.032

Keywords

micro-fluidic mixing; AC electro-osmosis; induced charge; field leakage

Ask authors/readers for more resources

We demonstrate efficient mixing in a micro-fluidic reservoir smaller than 10 mu L using ac electro-osmosis driven by field-induced polarization. Our mixing device, of that electrodes are outside of the mixing unit, consists of three circular reservoirs (3 mm in diameter) connected by a 1 mm x 1 mm channel. Unlike dc electro-osmosis, whose polarization is from charged substrate functional groups, this new mechanism uses the external field to capacitively charge the surface and the surface capacitance becomes the key factor in the electrokinetic mobility. The charging and mixing are enhanced at tailor-designed channel corners by exploiting the high normal fields at geometric singularities. The induced surface dielectric polarization and the resulting electric counter-ion double layer produce an effective Zeta potential in excess of 1V, over one order of magnitude larger than the channel Zeta potential. The resulting ac electro-osmotic slip velocity scales quadratically with respect to the applied field, in contrast to the linear scaling of dc electro-osmosis and at 1 cm/s and larger, exceeds the classical dc values by two orders of magnitude. The polarization is non-uniform at the corners due to field leakage to the dielectric substrate and the inhomogeneous slip velocity produces intense mixing vortices that effectively homogenize solutes in 30 s in a 3 mm reservoir, in contrast to hour-long mixing by pure diffusion. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available