4.4 Article

Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins

Journal

BIOCHEMISTRY
Volume 45, Issue 41, Pages 12530-12538

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi060565t

Keywords

-

Funding

  1. NIGMS NIH HHS [GM 66236] Funding Source: Medline

Ask authors/readers for more resources

Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaffold chosen, [Delta 7-H3m](2), is a four-R-helix bundle that contains two bis(3-methyl-L-histidine) heme binding sites with known absolute ferric and ferrous heme b affinities. Hemes b, o, o+16, and heme a, those involved in the biosynthesis of heme a, were incorporated into the bis(3-methyl-L-histidine) heme binding sites in [Delta 7-H3m](2). Spectroscopic analyses indicate that 2 equiv of each heme binds to [Delta 7H3m](2), as designed. Equilibrium binding studies of the hemes with the maquette demonstrate the tight affinity for hemes containing the C-2 hydroxyethylfarnesyl group in both the ferric and ferrous forms. Coupled with the measured equilibrium midpoint potentials, the data indicate that the hydroxyethylfarnesyl group stabilizes the binding of both ferrous and ferric heme by at least 6.3 kcal/mol via hydrophobic interactions. The data also demonstrate that the incorporation of the C-8 formyl substituent in heme a results in a 179 mV, or 4.1 kcal/mol, positive shift in the heme reduction potential relative to heme o due to the destabilization of ferric heme binding relative to ferrous heme binding. The two substituents appear to counterbalance each other to provide for tighter heme a affinity relative to heme b in both the ferrous and ferric forms by at least 6.3 and 2.1 kcal/mol, respectively. These results also provide a rationale for the reaction sequence observed in the biosynthesis of heme a.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available