4.7 Article

Presynaptic kainate receptor activation is a novel mechanism for target cell-specific short-term facilitation at Schaffer collateral synapses

Journal

JOURNAL OF NEUROSCIENCE
Volume 26, Issue 42, Pages 10796-10807

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2746-06.2006

Keywords

GIN mice; somatostatin; mathematical model; presynaptic; paired; pulse facilitation; release probability; interneuron; CA1; hippocampus

Categories

Funding

  1. NICHD NIH HHS [P30 HD038985, P01 HD038760, P01-HD38760, P30-HD38985] Funding Source: Medline
  2. NIMH NIH HHS [R01 MH065328, R01 MH65328] Funding Source: Medline

Ask authors/readers for more resources

Target cell-specific differences in short-term plasticity have been attributed to differences in the initial release probability of synapses. Using GIN (GFP-expressing inhibitory neurons) transgenic mice that express enhanced green fluorescent protein (EGFP) in a subset of interneurons containing somatostatin, we show that Schaffer collateral synapses onto the EGFP-expressing somatostatin interneurons in CA1 have very large short-term facilitation, even larger facilitation than onto pyramidal cells, in contrast to the majority of interneurons that have little or no facilitation. Using a combination of electrophysiological recordings and mathematical modeling, we show that the large short-term facilitation is caused both by a very low initial release probability and by synaptic activation of presynaptic kainate receptors that increase release probability on subsequent stimuli. Thus, we have discovered a novel mechanism for target cell-specific short-term plasticity at Schaffer collateral synapses in which the activation of presynaptic kainate receptors by synaptically released glutamate contributes to large short-term facilitation, enabling selective enhancement of the inputs to a subset of interneurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available