4.5 Article

When does the Michaelis-Menten equation hold for fluctuating enzymes?

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 41, Pages 20093-20097

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp065187g

Keywords

-

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

Enzymes are dynamic entities: both their conformation and catalytic activity fluctuate over time. When such fluctuations are relatively fast, it is not surprising that the classical Michaelis-Menten (MM) relationship between the steady-state enzymatic velocity and the substrate concentration still holds. However, recent single-molecule experiments have shown that this is the case even for an enzyme whose catalytic activity fluctuates on the 10(-4)-10 s range. The purpose of this paper is to examine various scenarios in which slowly fluctuating enzymes would still obey the MM relationship. Specifically, we consider (1) the quasi-static condition (e. g., the conformational fluctuation of the enzyme-substrate complex is much slower than binding, catalysis, and the conformational fluctuations of the free enzyme), (2) the quasi-equilibrium condition (when the substrate dissociation is much faster than catalysis, irrespective of the time scales or amplitudes of conformational fluctuations), and (3) the conformational-equilibrium condition (when the dissociation and catalytic rates depend on the conformational coordinate in the same way). For each of these scenarios, the physical meaning of the apparent Michaelis constant and catalytic rate constant is provided. Finally, as an example, the theoretical analysis of a recent single-molecule enzyme assay is considered in light of the perspectives presented in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available