4.5 Article

Monitoring interfacial bioelectrochemistry using a FRET switch

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 41, Pages 20649-20654

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0630525

Keywords

-

Ask authors/readers for more resources

Generation of functionally active biomolecular monolayers is important in both analytical science and biophysical analyses. Our ability to monitor the redox-active state of immobilized proteins or enzymes at a molecular level, from which stochastic and surface-induced variations would be apparent, is impeded by comparatively slow electron-transfer kinetics and associated signal: noise difficulties. We demonstrate herein that by covalently tethering an appropriate dye to the copper protein azurin a highly oxidation-state-sensitive FRET process can be established which enables redox switching to be optically monitored at protein levels down to the zeptomolar limit. The surface-potential-induced cycling of emission enables the redox potential of clusters of a few hundred molecules to be determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available