4.6 Article

Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 42, Pages 31720-31728

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602308200

Keywords

-

Ask authors/readers for more resources

A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased expression of canonical Wnt pathway and Wnt/beta-catenin target genes compared with non-transgenic explant derived osteoblasts. Therefore, expression of Wnt/beta-catenin target genes were monitored after in vivo loading of the tibia of LRP5 G171V transgenic mice compared with non-transgenic mice. Loading resulted in the increased expression of Wnt pathway and Wnt/beta-catenin target genes including Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43 in both genotypes; however, there was a further increased in transcriptional response with the LRP5 G171V transgenic mice. Similar increases in the expression of these genes (except cyclin D1) were observed when non- transgenic mice were pharmacologically treated with a canonical Wnt pathway activator, glycogen synthase kinase 3 beta inhibitor and then subjected to load. These in vivo results were further corroborated by in vitro mechanical loading experiments in which MC3T3-E1 osteoblastic cells were subjected to 3400 microstrain alone for 5 h, which increased the expression of Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43. Furthermore, when MC3T3-E1 cells were treated with either glycogen synthase kinase 3 beta inhibitor or Wnt3A to activate Wnt signaling and then subjected to load, a synergistic up-regulation of these genes was observed compared with vehicle-treated cells. Collectively, the in vivo and in vitro mechanical loading results support that Wnt/beta-catenin signaling is a normal physiological response to load and that activation of the Wnt/beta-catenin pathway enhances the sensitivity of osteoblasts/osteocytes to mechanical loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available