4.6 Article

Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 42, Pages 31736-31742

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602188200

Keywords

-

Ask authors/readers for more resources

1-Cys peroxiredoxins (1-Cys Prxs) are antioxidant enzymes that catalyze the reduction of hydroperoxides into alcohols using a strictly conserved cysteine. 1-Cys B-Prxs, homologous to human PrxVI, were recently shown to be reactivated by glutathione S-transferase (GST) pi via the formation of a GST-Prx heterodimer and Prx glutathionylation. In contrast, 1-Cys D-Prxs, homologous to human PrxV, are reactivated by the glutaredoxin-glutathione system through an unknown mechanism. To investigate the mechanistic events that mediate the 1-Cys D-Prx regeneration, interaction of the Prx with glutathione was studied by mass spectrometry and NMR. This work reveals that the Prx can be glutathionylated on its active site cysteine. Evidences are reported that the glutathionylation of 1-Cys D-Prx induces the dissociation of the Prx non-covalent homodimer, which can be recovered by reduction with dithiothreitol. This work demonstrates for the first time the existence of a redox-dependent dimer-monomer switch in the Prx family, similar to the decamer-dimer switch for the 2-Cys Prxs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available