4.8 Article

Undoing a weak quantum measurement of a solid-state qubit

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 16, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.166805

Keywords

-

Ask authors/readers for more resources

We propose an experiment which demonstrates the undoing of a weak continuous measurement of a solid-state qubit, so that any unknown initial state is fully restored. The undoing procedure has only a finite probability of success because of the nonunitary nature of quantum measurement, though it is accompanied by a clear experimental indication of whether or not the undoing has been successful. The probability of success decreases with increasing strength of the measurement, reaching zero for a traditional projective measurement. Measurement undoing (quantum undemolition) may be interpreted as a kind of quantum eraser, in which the information obtained from the first measurement is erased by the second measurement, which is an essential part of the undoing procedure. The experiment can be realized using quantum dot (charge) or superconducting (phase) qubits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available