4.8 Article

Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6

Journal

JOURNAL OF POWER SOURCES
Volume 161, Issue 1, Pages 573-579

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2006.03.058

Keywords

ethylene carbonate; lithium hexafuorophosphate; lithium ion battery

Ask authors/readers for more resources

The thermal stability of the neat lithium hexafluorophosphate (LiPF6) salt and of 1 molal (m) solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF6 salt is thermally stable up to 107 degrees C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF5 as a gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form phosphorous oxyfluoride (POF3) and hydrofluoric acid (HF). No new products were observed in I m solutions of LiPF6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 degrees C for 300-420 h did not produce any significant quantity of new products as well. In particular. no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available