4.7 Article

Designing new Baeyer-Villiger monooxygenases using restricted CASTing

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 71, Issue 22, Pages 8431-8437

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo0613636

Keywords

-

Ask authors/readers for more resources

This paper outlines the design and execution of the first mini-evolution of cyclopentanone monooxygenase (CPMO). The methodology described is a relatively inexpensive and rapid way to obtain mutant enzymes with the desired characteristics. Several successful mutants with enhanced enantioselectivities were identified. For example, mutant-catalyzed oxidation of 4-methoxycyclohexanone gave the corresponding lactone with 92% entantiometric excess (ee) compared to the 46% ee achieved with wild-type cyclohexanone monoxygenase (WT-CHMO). The original design of the mini-evolution and the following evaluation of mutants can provide valuable insights into the active site's construction and dynamics and can suggest other catalytically profitable mutations within the putative active site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available