4.7 Article

Dynamics of vesicle self-assembly and dissolution Dynamics of vesicle self-assembly and dissolution

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 125, Issue 16, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2358983

Keywords

-

Ask authors/readers for more resources

The dynamics of membranes is studied on the basis of a particle-based meshless surface model, which was introduced earlier [Phys. Rev. E 73, 021903 (2006)]. The model describes fluid membranes with bending energy and-in the case of membranes with boundaries-line tension. The effects of hydrodynamic interactions are investigated by comparing Brownian dynamics with a particle-based mesoscale solvent simulation (multiparticle collision dynamics). Particles self-assemble into vesicles via disk-shaped membrane patches. The time evolution of assembly is found to consist of three steps: particle assembly into discoidal clusters, aggregation of clusters into larger membrane patches, and finally vesicle formation. The time dependence of the cluster distribution and the mean cluster size is evaluated and compared with the predictions of Smoluchowski rate equations. On the other hand, when the line tension is suddenly decreased (or the temperature is increased), vesicles dissolve via pore formation in the membrane. Hydrodynamic interactions are found to speed up the dynamics in both cases. Furthermore, hydrodynamics makes vesicle more spherical in the membrane-closure process. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available