4.5 Article

Molecular characterization of a possible progenitor sodium channel toxin from the Old World scorpion Mesobuthus martensii

Journal

FEBS LETTERS
Volume 580, Issue 25, Pages 5979-5987

Publisher

WILEY
DOI: 10.1016/j.febslet.2006.09.071

Keywords

ion channel; disulfide bridge; functional evolution; toxin origin; peptide scaffold; gene structure

Ask authors/readers for more resources

Toxins affecting sodium channels widely exist in the venoms of scorpions throughout the world. These molecules comprise an evolutionarily related peptide family with three shared features including conserved three-dimensional structure and gene organization, and similar function. Based on different pharmacological profiles and binding properties, scorpion sodium channel toxins are divided into alpha- and beta-groups. However, their evolutionary relationship is not yet established. Here, we report a gene isolated from the venom gland of scorpion Mesobuthus martensii which encodes a novel sodium channel toxin-like peptide of 64 amino acids, named Mesotoxin. The Mesotoxin gene is organized into three exons and two introns with the second intron location conserved across the family. This peptide is unusual in that it has only three disulfides and a long cysteine-free tail with loop size and structural characteristics close to beta-toxins. Evolutionary analysis favors its basal position in the origin of scorpion sodium channel toxins as a progenitor. The discovery of Mesotoxin will assist investigations into the key issue regarding the origin and evolution of scorpion toxins. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available