4.6 Review

Endometrial receptivity markers, the journey to successful embryo implantation

Journal

HUMAN REPRODUCTION UPDATE
Volume 12, Issue 6, Pages 731-746

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/humupd/dml004

Keywords

cell adhesion molecules; cytokines; embryo; endometrial receptivity; implantation

Ask authors/readers for more resources

Human embryo implantation is a three-stage process (apposition, adhesion and invasion) involving synchronized crosstalk between a receptive endometrium and a functional blastocyst. This ovarian steroid-dependant phenomenon can only take place during the window of implantation, a self-limited period of endometrial receptivity spanning between days 20 and 24 of the menstrual cycle. Implantation involves a complex sequence of signalling events, consisting in the acquisition of adhesion ligands together with the loss of inhibitory components, which are crucial to the establishment of pregnancy. Histological evaluation, now considered to add little clinically significant information, should be replaced by functional assessment of endometrial receptivity. A large number of molecular mediators have been identified to date, including adhesion molecules, cytokines, growth factors, lipids and others. Thus, endometrial biopsy samples can be used to identify molecules associated with uterine receptivity to obtain a better insight into human implantation. In addition, development of functional in vitro systems to study embryo-uterine interactions will lead to better definition of the interactions existing between the molecules involved in this process. The purpose of this review was not only to describe the different players of the implantation process but also to try to portray the relationship between these factors and their timing in the process of uterine receptivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available