4.5 Article

Zr diffusion in titanite

Journal

CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
Volume 152, Issue 5, Pages 639-647

Publisher

SPRINGER
DOI: 10.1007/s00410-006-0133-0

Keywords

-

Ask authors/readers for more resources

Chemical diffusion of Zr under anhydrous, pO(2)-buffered conditions has been measured in natural titanite. The source of diffusant was either zircon powder or a ZrO2-Al2O3-titanite mixture. Experiments were run in sealed silica glass capsules with solid buffers (to buffer at NNO or QFM). Rutherford Backscattering Spectrometry (RBS) was used to measure diffusion profiles. The following Arrhenius parameters were obtained for Zr diffusion parallel to c over the temperature range 753-1,100 degrees C under NNO-buffered conditions: D (Zr) = 5.33 x 10(-7) exp(-325 +/- 30 kJ mol(-1)/RT) m(2) s(-1) Diffusivities are similar for experiments buffered at QFM. These data suggest that titanite should be moderately retentive of Zr chemical signatures, with diffusivities slower than those for O and Pb in titanite, but faster than those for Sr and the REE. When applied in evaluation of the relative robustness of the recently developed Zr-in-titanite geothermometer (Hayden and Watson, Abstract, 16th V.M. Goldschmidt Conference 2006), these findings suggest that Zr concentrations in titanite will be less likely to be affected by later thermal disturbance than the geothermometer based on Zr concentrations in rutile (Zack et al. in Contrib Mineral Petrol 148:471-488, 2004; Watson et al. in Contrib Mineral. Petrol, 2006), but much less resistant to diffusional alteration subsequent to crystallization than the Ti-in-Zircon geothermometer (Watson and Harrison in Science 308: 841-844, 2005).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available