4.6 Article

Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice:: Enzyme and arsenic species concentrations in tissues after arsenate administration

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 216, Issue 3, Pages 446-457

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2006.06.014

Keywords

arsenic; knockout; GST-Omega; MMA(III); DMA(III)

Funding

  1. NIEHS NIH HHS [P30-ES-06694, ES 04940] Funding Source: Medline

Ask authors/readers for more resources

Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arseniccontaining metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic +3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 by of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate. (c) 2006 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available