4.7 Article

Protective immunity against respiratory tract challenge with Yersinia pestis in mice immunized with an adenovirus-based vaccine vector expressing V antigen

Journal

JOURNAL OF INFECTIOUS DISEASES
Volume 194, Issue 9, Pages 1249-1257

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1086/507644

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI055844, U54 AI057158, R01 AI 55844] Funding Source: Medline

Ask authors/readers for more resources

The aerosol form of the bacterium Yersinia pestis causes the pneumonic plague, a rapidly fatal disease. At present, no plague vaccines are available for use in the United States. One candidate for the development of a subunit vaccine is the Y. pestis virulence (V) antigen, a protein that mediates the function of the Yersinia outer protein virulence factors and suppresses inflammatory responses in the host. On the basis of the knowledge that adenovirus (Ad) gene-transfer vectors act as adjuvants in eliciting host immunity against the transgene they carry, we tested the hypothesis that a single administration of a replication-defective Ad gene-transfer vector encoding the Y pestis V antigen (AdsecV) could stimulate strong protective immune responses without a requirement for repeat administration. AdsecV elicited specific T cell responses and high IgG titers in serum within 2 weeks after a single intramuscular immunization. Importantly, the mice were protected from a lethal intranasal challenge of Y pestis CO92 from 4 weeks up to 6 months after immunization with a single intramuscular dose of AdsecV. These observations suggest that an Ad gene-transfer vector expressing V antigen is a candidate for development of an effective anti-plague vaccine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available