4.1 Review

Current perspectives on the genetic causes of neural tube defects

Journal

NEUROGENETICS
Volume 7, Issue 4, Pages 201-221

Publisher

SPRINGER
DOI: 10.1007/s10048-006-0052-2

Keywords

neural tube defects (NTDs); neurulation; genetic risk factors; planar cell polarity (PCP) pathway; folate metabolism

Ask authors/readers for more resources

Neural tube defects (NTDs) are a group of severe congenital abnormalities resulting from the failure of neurulation. The pattern of inheritance of these complex defects is multifactorial, making it difficult to identify the underlying causes. Scientific research has rapidly progressed in experimental embryology and molecular genetics to elucidate the basis of neurulation. Crucial mechanisms of neurulation include the planar cell polarity pathway, which is essential for the initiation of neural tube closure, and the sonic hedgehog signaling pathway, which regulates neural plate bending. Genes influencing neurulation have been investigated for their contribution to human neural tube defects, but only genes with well-established role in convergent extension provide an exciting new set of candidate genes. Biochemical factors such as folic acid appear to be the greatest modifiers of NTDs risk in the human population. Consequently, much research has focused on genes of folate-related metabolic pathways. Variants of several such genes have been found to be significantly associated with the risk of neural tube defects in more studies. In this manuscript, we reviewed the current perspectives on the causes of neural tube defects and highlighted that we are still a long way from understanding the etiology of these complex defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available