4.4 Article

Evolution of the fastest-growing relativistic mixed mode instability driven by a tenuous plasma beam in one and two dimensions

Journal

PHYSICS OF PLASMAS
Volume 13, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2390687

Keywords

-

Ask authors/readers for more resources

Particle-in-cell simulations confirm here that a mixed plasma mode is the fastest growing when a highly relativistic tenuous electron-proton beam interacts with an unmagnetized plasma. The mixed modes grow faster than the filamentation and two-stream modes in simulations with beam Lorentz factors Gamma of 4, 16, and 256, and are responsible for thermalizing the electrons. The mixed modes are followed to their saturation for the case of Gamma=4 and electron phase space holes are shown to form in the bulk plasma, while the electron beam becomes filamentary. The initial saturation is electrostatic in nature in the considered one- and two-dimensional geometries. Simulations performed with two different particle-in-cell simulation codes evidence that a finite grid instability couples energy into high-frequency electromagnetic waves, imposing simulation constraints. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available