4.4 Article

Generation and trapping of gravity waves from convection with comparison to parameterization

Journal

JOURNAL OF THE ATMOSPHERIC SCIENCES
Volume 63, Issue 11, Pages 2963-2977

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAS3792.1

Keywords

-

Ask authors/readers for more resources

Some parameterizations of gravity wave mean flow forcing in global circulation models (GCMs) add realism by describing wave generation by tropospheric convection. Because the convection in GCMs is itself a parameterized process, these convectively generated wave parameterizations necessarily use many simplifying assumptions. In this work, the authors use a realistic simulation of wave generation by convection described in previous work, which was validated by observations from the Darwin Area Wave Experiment (DAWEX), to test these assumptions and to suggest some possible improvements to the parameterizations. In particular, the authors find that wave trapping in the troposphere significantly modifies the spectrum of vertically propagating waves entering the stratosphere above convective wave sources, and offer a linear method for computing wave transmission and reflection effects on the spectrum suitable for inclusion in the parameterizations. The wave fluxes originate from both a time-varying heating mechanism and an obstacle effect mechanism acting in the simulation. Methods for including both mechanisms in the parameterizations are described. Waves emanating from the obstacle effect remain very sensitive to the depth of penetration of latent heating cells into an overlying shear zone, which will continue to make it difficult to accurately parameterize in a GCM where the convective cells are not resolved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available