4.2 Article

Identification of critical amino acid residues in the plague biofilm Hms proteins

Journal

MICROBIOLOGY-SGM
Volume 152, Issue -, Pages 3399-3410

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.29224-0

Keywords

-

Categories

Ask authors/readers for more resources

Yersinia pestis biofilm formation causes massive adsorption of haemin or Congo red in vitro as well as colonization and eventual blockage of the flea proventriculus in vivo. This blockage allows effective transmission of plague from some fleas, like the oriental rat flea, to mammals. Four Hms proteins, HmsH, HmsF, HmsR and HmsS, are essential for biofilm formation, with HmsT and HmsP acting as positive and negative regulators, respectively. HmsH has a beta-barrel structure with a large periplasmic domain while HmsF possesses polysaccharide deacetylase and COG1649 domains. HmsR is a putative glycosyltransferase while HmsS has no recognized domains. In this study, specific amino acids within conserved domains or within regions of high similarity in HmsH, HmsF, HmsR and HmsS proteins were selected for site-directed mutagenesis. Some but not all of the substitutions in HmsS and within the periplasmic domain of HmsH were critical for protein function. Substitutions within the glycosyltransferase domain of HmsR and the deacetylase domain of HmsF abolished biofilm formation in Y. pestis. Surprisingly, substitution of highly conserved residues within COG 1649 did not affect HmsF function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available