4.7 Article

Genes involved in intrinsic antibiotic resistance of Acinetobacter baylyi

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 50, Issue 11, Pages 3562-3567

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00579-06

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI049214, AI56575, U19 AI056575, AI49214] Funding Source: Medline

Ask authors/readers for more resources

Bacterial genes defining intrinsic resistance to antibiotics encode proteins that can be targeted by antibiotic potentiators. To find such genes, a transposon insertion library of Acinetobacter baylyi was screened with subinhibitory concentrations of various antibiotics to find supersusceptible mutants. A DNA microarray printer was used to replica plate 10,000 individual library clones to select mutants unable to grow at 1/10 the MICs of 12 different antibiotics. Transposon insertions in 11 genes were found to cause an eightfold or higher hypersusceptibility to at least one antibiotic. Most of the mutants identified exhibited hypersusceptibility to beta-lactam antibiotics. These included mutants with disruptions of genes encoding proteins involved in efflux (acrB and oprM) as well as genes pertaining to peptidoglycan synthesis and modification (ampD, mpl, and pbpG). However, disruptions of genes encoding proteins with seemingly unrelated functions (gph, argH, hisF, and ACIAD0795) can also render cells hypersusceptible to beta-lactam antibiotics. A knockout of gshA, involved in glutathione biosynthesis, enhanced the susceptibility to metronidazole, while a knockout of recD, involved in recombination and repair, made the bacteria hypersusceptible to ciprofloxacin. Disruption of acrB in Escherichia colt rendered the cells hypersusceptible to several antibiotics. However, knockout mutants of other homologous genes in E. coli showed no significant changes in antibiotic MICs, indicating that the intrinsic resistance genes are species specific.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available