4.7 Article

Effects of system parameters on making aluminum alloy lotus

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 303, Issue 1, Pages 298-305

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2006.06.067

Keywords

aluminum alloy; lotus effect; superhydrophobicity; surface roughness; system parameters; contact angle

Ask authors/readers for more resources

In the present article, stable biomimetic superhydrophobic surfaces on aluminum alloy are obtained by wet chemical etching following modification with crosslinked silicone elastomer, perfluorononane (C9F20), and perfluoropolyether (PFPE), respectively. The formation and structure of superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), water contact angle measurement, Fourier transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The effects of surface roughness resulted from the etching time, and the concentration of NaOH aqueous solution on the superhydrophobicity of the surfaces have been discussed in detail. The optimal surface roughness of starting material is about 0.05-0.5 mu m and the resulting surface roughness should be controlled between 2.7 and 5.8 mu m in order to realize the superhydrophobicity on aluminum alloy; if the concentration of NaOH aqueous solution is about 4 wt%, the best treatment time is between 2 and 4 h to form a surface roughness changing from 2.7 to 5.8 mu m. The trapped air with the binary structure plays a key role in fabricating superhydrophobic surface on aluminum alloy. In other words, the unusual structure on the surface, which has a binary structure consisted of microprotrusions and nanoparticles, plays a very vital role in constructing of the stable biomimetic superhydrophobic surface on aluminum alloy. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available