4.5 Article

A curvature-mediated mechanism for localization of lipids to bacterial poles

Journal

PLOS COMPUTATIONAL BIOLOGY
Volume 2, Issue 11, Pages 1357-1364

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.0020151

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM073186-02, R01 GM073186, K25 GM075000, 1K25 GM075000] Funding Source: Medline

Ask authors/readers for more resources

Subcellular protein localization is a universal feature of eukaryotic cells, and the ubiquity of protein localization in prokaryotic species is now acquiring greater appreciation. Though some targeting anchors are known, the origin of polar and division-site localization remains mysterious for a large fraction of bacterial proteins. Ultimately, the molecular components responsible for such symmetry breaking must employ a high degree of self-organization. Here we propose a novel physical mechanism, based on the two-dimensional curvature of the membrane, for spontaneous lipid targeting to the poles and division site of rod-shaped bacterial cells. If one of the membrane components has a large intrinsic curvature, the geometrical constraint of the plasma membrane by the more rigid bacterial cell wall naturally leads to lipid microphase separation. We find that the resulting clusters of high-curvature lipids are large enough to spontaneously and stably localize to the two cell poles. Recent evidence of localization of the phospholipid cardiolipin to the poles of bacterial cells suggests that polar targeting of some proteins may rely on the membrane's differential lipid content. More generally, aggregates of lipids, proteins, or lipid-protein complexes may localize in response to features of cell geometry incapable of localizing individual molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available