4.6 Article

Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs

Journal

BASIC RESEARCH IN CARDIOLOGY
Volume 101, Issue 6, Pages 502-507

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00395-006-0606-3

Keywords

myocardial infarction; pigs; postconditioning; reperfusion injury

Ask authors/readers for more resources

Postconditioning in the early reperfusion period confers protection to the heart after a potentially lethal episode of prolonged ischemia. Protection from this novel intervention has been documented in rat, rabbit and canine hearts, but one group has reported that it is ineffective in pigs, a large-animal species that should be most relevant to humans. We hypothesized that this negative result was related to an inappropriate postconditioning protocol rather than the species. The present study, therefore, tested whether an effective postconditioning protocol could be identified that limits infarct size in anesthetized pigs. Domestic Landrace pigs weighing 25-29 kg were anesthetized, and after a mid-sternal thoracotomy and pericardiotomy the left anterior descending coronary artery was ligated for 60 min followed by 3 h of reperfusion. Three groups were studied: control group (n = 5) with no other intervention, 4-30 PostC group (n = 5) with 4 cycles of 30-s reperfusion/30-s ischemia, and 8-30 PostC group (n = 6) with 8 cycles of 30-s reperfusion/30-s ischemia. The two postconditioning protocols started immediately after termination of the 60-min coronary occlusion. Region at risk and infarct size were delineated with the aid of pre-mortem monastral blue injection and postmortem staining with triphenyltetrazolium chloride, respectively. In control hearts 33.5 +/- 7.6% of the risk zone infarcted and 36.7 +/- 3.7% in the 4-30 PostC group (P = NS). But there was only 10.5 +/- 0.5% infarction in the 8-30 PostC group (P < 0.01 vs. the other two groups). Postconditioning confers protection in pigs but requires more than 4 ischemia/reperfusion cycles. Postconditioning may protect by inhibiting mitochondrial permeability transition pore formation by keeping the heart acidotic as it is reoxygenated. If true, then it would be difficult to employ too many occlusion cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available