4.4 Article

Increased information transmission during scientific hypothesis generation: Mutual information analysis of multichannel EEG

Journal

INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY
Volume 62, Issue 2, Pages 337-344

Publisher

ELSEVIER
DOI: 10.1016/j.ijpsycho.2006.06.003

Keywords

mutual information; hypothesis generation; EEG; information transmission; declarative memory; procedural memory

Ask authors/readers for more resources

Hypothesis generation has been regarded as one of the core reasoning processes in creative thinking and scientific discovery. To investigate changes in the amount of information transmission during scientific hypothesis generation, the averaged cross-mutual-information (A-CMI) of EEGs was estimated. Twenty-five 5th grade students were sampled in this study. EEG signals from 16 electrodes on each subject's scalp were recorded using a 32-channel EEG system. In order to generate hypotheses, the students were asked to observe 20 quail eggs that gave rise to questions such as: Why do different sizes and shapes of patterns appear on the surface of the eggs? After the observation, they were asked to generate a scientific hypothesis-a tentative causal explanation for the evoked question. The results of experimentation indicated several distinct brain activities during hypothesis generation interacting between different local brain regions. In addition, it was observed that the amount of information transmission during hypothesis generation increased in a large part of the brain region encompassing the temporal, parietal, and occipital cortexes, which implies the use of declarative and procedural memory systems. Furthermore, this study suggested the possibility that neuropsychological approaches may be potential tools to investigate the neuronal activity of EEGs during hypothesis generation. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available