4.6 Article

Analytical and numerical techniques to predict carbon nanotubes properties

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 43, Issue 22-23, Pages 6832-6854

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2006.02.009

Keywords

carbon nanotube; nanostructures; asymptotic homogenization; finite element analysis; mechanical properties; shell theory

Categories

Ask authors/readers for more resources

In this paper, two different approaches for modeling the behaviour of carbon nanotubes are presented. The first method models carbon nanotubes as an inhomogeneous cylindrical network shell using the asymptotic homogenization method. Explicit formulae are derived representing Young's and shear moduli of single-walled nanotubes in terms of pertinent material and geometric parameters. As an example, assuming certain values for these parameters, the Young's modulus was found to be 1.71 TPa, while the shear modulus was 0.32 TPa. The second method is based on finite element models. The inter-atomic interactions due to covalent and non-covalent bonds are replaced by beam and spring elements, respectively, in the structural model. Correlations between classical molecular mechanics and structural mechanics are used to effectively model the physics governing the nanotubes. Finite element models are developed for single-, double- and multi-walled carbon nanotubes. The deformations from the finite element simulations are subsequently used to predict the elastic and shear moduli of the nanotubes. The variation of mechanical properties with tube diameter is investigated for both zig-zag and armchair configurations. Furthermore, the dependence of mechanical properties on the number of nanotubules in multi-walled structures is also examined. Based on the finite element model, the value for the elastic modulus varied from 0.9 to 1.05 TPa for single and 1.32 to 1.58 TPa for double/multi-walled nanotubes. The shear modulus was found to vary from 0.14 to 0.47 TPa for single-walled nanotubes and 0.37 to 0.62 for double/multi-walled nanotubes. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available