4.6 Article

Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair

Journal

OSTEOARTHRITIS AND CARTILAGE
Volume 14, Issue 11, Pages 1126-1135

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.joca.2006.04.004

Keywords

microfracture; cartilage; bone morphogenetic protein 7; BMP-7

Ask authors/readers for more resources

Objective: Microfracture is used to treat articular cartilage injuries, but leads to the formation of fibrocartilage rather than native hyaline articular cartilage. Since bone morphogenetic protein 7 (BMP-7) induces cartilage differentiation, we hypothesized that the addition of the morphogen would improve the repair tissue generated by microfracture. We determined the effects of these two treatments alone and in combination on the quality and quantity of repair tissue formed in a model of full-thickness articular cartilage injury in adolescent rabbits. Design: Full-thickness defects were made in the articular cartilage of the patellar grooves of forty, 15-week-old rabbits. Eight animals were then assigned to (1) no further treatment (control), (2) microfracture, (3) BMP-7, (4) microfracture with BMP-7 in a collagen sponge (combination treatment), and (5) microfracture with a collagen sponge. Animals were sacrificed after 24 weeks at 39 weeks of age. The extent of healing was quantitated by determining the thickness and the surface area of the repair tissue. The quality of the repair tissue was determined by grading specimens using the International Cartilage Repair Society Visual Histological Assessment Scale. Results: Compared to controls, BMP-7 alone increased the amount of repair tissue without affecting the quality of repair tissue. Microfracture improved both the quantity and surface smoothness of repair tissue. Compared to either single treatment, the combination of microfracture and BMP-7 increased both the quality and quantity of repair tissue. Conclusions: Microfracture and BMP-7 act synergistically to stimulate cartilage repair, leading to larger amounts of repair tissue that more closely resembles native hyaline articular cartilage. (C) 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available