4.5 Article

Paradoxical lipid dependence of pores formed by the Escherichia coli α-hemolysin in planar phospholipid bilayer membranes

Journal

BIOPHYSICAL JOURNAL
Volume 91, Issue 10, Pages 3748-3755

Publisher

CELL PRESS
DOI: 10.1529/biophysj.106.090019

Keywords

-

Categories

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

alpha-Hemolysin (HlyA) is an extracellular protein toxin (117 kDa) secreted by Escherichia coli that targets the plasma membranes of eukaryotic cells. We studied the interaction of this toxin with membranes using planar phospholipid bilayers. For all lipid mixtures tested, addition of nanomolar concentrations of toxin resulted in an increase of membrane conductance and a decrease in membrane stability. HlyA decreased membrane lifetime up to three orders of magnitude in a voltage-dependent manner. Using a theory for lipidic pore formation, we analyzed these data to quantify how HlyA diminished the line tension of the membrane (i.e., the energy required to form the edge of a new pore). However, in contrast to the expectation that adding the positive curvature agent lysophosphatidylcholine would synergistically lower line tension, its addition significantly stabilized HlyA-treated membranes. HlyA also appeared to thicken bilayers to which it was added. We discuss these results in terms of models for proteolipidic pores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available