4.4 Article Proceedings Paper

Brain G protein-dependent signaling pathways in Down syndrome and Alzheimer's disease

Journal

AMINO ACIDS
Volume 31, Issue 4, Pages 449-456

Publisher

SPRINGER WIEN
DOI: 10.1007/s00726-005-0272-z

Keywords

adenylyl cyclase; phospholipase C; cerebral cortex; cerebellum; Down syndrome; Alzheimer's disease

Ask authors/readers for more resources

Premature aging and neuropathological features of Alzheimer's disease (AD) are commonly observed in Down syndrome (DS). Based on previous findings in a DS mouse model, the function of signaling pathways associated with adenylyl cyclase (AC) and phospholipase C (PLC) was assessed in cerebral cortex and cerebellum of age-matched adults with DS, AD, and controls. Basal production of cAMP was reduced in DS but not in AD cortex, and in both, DS and AD cerebellum. Responses to GTP gamma S, noradrenaline, SKF 38393 and forskolin were more depressed in DS than in AD cortex and cerebellum. Although no differences in PLC activity among control, DS and AD cortex were observed under basal and GTP gamma S- or Ca-stimulated conditions, the response of DS cortex to serotonergic and cholinergic stimulation was depressed, and that of AD was only impaired at cholinergic stimulation. No differences were documented in cerebellum. Our results demonstrate that PLC and AC were severely disturbed in the aged DS and AD brains, but the alterations in DS were more severe, and differed to some extent from those observed in AD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available