4.5 Article

Mixed ligand ruthenium(II) complexes of 5,6-dimethyl-1,10-phenanthroline: The role of ligand hydrophobicity on DNA binding of the complexes

Journal

INORGANICA CHIMICA ACTA
Volume 359, Issue 14, Pages 4601-4612

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ica.2006.07.053

Keywords

Ru(II) complexes; mixed ligands; circular dichroism; emission; exciton coupling

Ask authors/readers for more resources

A series of mixed ligand Ru(II) complexes of 5,6-dimethyl-1, 10-phenanthroline (5,6-dmp) as primary ligand and 1, 10-phenanthroline (phen), 2,2'-bipyridine (bpy), pyridine (py) and NH3 as co-ligands have been prepared and characterized by X-ray crystallography, elemental analysis and H-1 NMR and electronic absorption spectroscopy. The X-ray crystal structure of the complex [Ru(phen)(2)(bpy)]Cl-2 reveals a distorted octahedral coordination geometry for the RuN6 coordination sphere. The DNA binding constants obtained from the absorption spectral titrations decrease in the order, tris(5,6-dmp)Ru(II) > bis(5,6-dmp)Ru(II) > mono(5,6-dmp)Ru(II), which is consistent with the trend in apparent emission enhancement of the complexes on binding to DNA. These observations reveal that the DNA binding affinity of the complexes depend upon the number of 5,6-dmp ligands and hence the hydrophobic interaction of 5,6-dimethyl groups on the DNA surface, which is critical in determining the DNA binding affinity and the solvent accessibility of the exciplex. Among the bis(5,6-dmp)Ru(II) complexes, those with monodentate py (4) or NH3 (5) co-ligands show DNA binding affinities slightly higher than the bpy and phen analogues. This reveals that they interact with DNA through the co-ligands while both the 5,6-dmp ligands interact with the exterior of the DNA surface. All these observations are supported by thermal denaturation and viscosity measurements. Two DNA binding modes - surface/electrostatic and strong hydrophobic/partial intercalative DNA interaction - are suggested for the mixed ligand complexes on the basis of time-resolved emission measurements. Interestingly, the 5,6-dmp ligands promote aggregation of the complexes on the DNA helix as a helical nanotemplate, as evidenced by induced CD signals in the U-V region. The ionic strength variation experiments and competitive DNA binding studies on bis(5,6-dmp)Ru(II) complexes reveal that EthBr and the partially intercalated and kinetically inert [Ru(phen)(2)(dppz)](2+) (dppz = dipyrido[3,2-a:2',3'-c]phenazine) complexes revert the CD signals induced by exciton coupling of the DNA-bound complexes with the free complexes in solution. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available