4.1 Article

Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4

Journal

CHEMISTRY & BIOLOGY
Volume 13, Issue 11, Pages 1143-1152

Publisher

CELL PRESS
DOI: 10.1016/j.chembiol.2006.09.005

Keywords

-

Ask authors/readers for more resources

Glycosyltransferases (GTs) catalyze the synthesis of the myriad glycoconjugates that are central to life. One of the largest families is GT4, which contains several enzymes of therapeutic significance, exemplified by WaaG and AviGT4. WaaG catalyses a key step in lipopolysaccharide synthesis, while AviGT4, produced by Streptomyces viridochromogenes, contributes to the synthesis of the antibiotic avilamycin A. Here we present the crystal structure of both WaaG and AviGT4. The two enzymes contain two Rossmann-like (beta/alpha/beta) domains characteristic of the GT-B fold. Both recognition of the donor substrate and the catalytic machinery is similar to other retaining GTs that display the GT-B fold. Structural information is discussed with respect to the evolution of GTs and the therapeutic significance of the two enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available