4.2 Article Proceedings Paper

Process optimization and proximity effect correction for gray scale e-beam lithography

Journal

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
Volume 24, Issue 6, Pages 2936-2939

Publisher

A V S AMER INST PHYSICS
DOI: 10.1116/1.2357962

Keywords

-

Ask authors/readers for more resources

Three-dimensional microstructures find applications in diffractive optical elements, photonic elements, etc., and can be efficiently fabricated by e-beam lithography. Good process control and efficient proximity effect correction are important for achieving the desired structures. With polymethylmethacrylate as the resist, a process optimization of different develop conditions is carried out to identify a process that is most conductive to gray scale features. A novel proximity effect correction scheme called effective dose-depth (EDD) method is proposed. Using the EDD method for grating design and the optimized process, blazed gratings have been fabricated with excellent uniformity and low surface roughness. (c) 2006 American Vacuum Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available